3.1.16 \(\int (a+a \cos (c+d x))^2 (A+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [16]

3.1.16.1 Optimal result
3.1.16.2 Mathematica [A] (verified)
3.1.16.3 Rubi [A] (verified)
3.1.16.4 Maple [A] (verified)
3.1.16.5 Fricas [A] (verification not implemented)
3.1.16.6 Sympy [F(-1)]
3.1.16.7 Maxima [A] (verification not implemented)
3.1.16.8 Giac [A] (verification not implemented)
3.1.16.9 Mupad [B] (verification not implemented)

3.1.16.1 Optimal result

Integrand size = 33, antiderivative size = 147 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {a^2 (7 A+12 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {2 a^2 (2 A+3 C) \tan (c+d x)}{3 d}+\frac {a^2 (11 A+12 C) \sec (c+d x) \tan (c+d x)}{24 d}+\frac {A \left (a^2+a^2 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{6 d}+\frac {A (a+a \cos (c+d x))^2 \sec ^3(c+d x) \tan (c+d x)}{4 d} \]

output
1/8*a^2*(7*A+12*C)*arctanh(sin(d*x+c))/d+2/3*a^2*(2*A+3*C)*tan(d*x+c)/d+1/ 
24*a^2*(11*A+12*C)*sec(d*x+c)*tan(d*x+c)/d+1/6*A*(a^2+a^2*cos(d*x+c))*sec( 
d*x+c)^2*tan(d*x+c)/d+1/4*A*(a+a*cos(d*x+c))^2*sec(d*x+c)^3*tan(d*x+c)/d
 
3.1.16.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.07 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {7 a^2 A \text {arctanh}(\sin (c+d x))}{8 d}+\frac {3 a^2 C \text {arctanh}(\sin (c+d x))}{2 d}+\frac {2 a^2 A \tan (c+d x)}{d}+\frac {2 a^2 C \tan (c+d x)}{d}+\frac {7 a^2 A \sec (c+d x) \tan (c+d x)}{8 d}+\frac {a^2 C \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a^2 A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {2 a^2 A \tan ^3(c+d x)}{3 d} \]

input
Integrate[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]
 
output
(7*a^2*A*ArcTanh[Sin[c + d*x]])/(8*d) + (3*a^2*C*ArcTanh[Sin[c + d*x]])/(2 
*d) + (2*a^2*A*Tan[c + d*x])/d + (2*a^2*C*Tan[c + d*x])/d + (7*a^2*A*Sec[c 
 + d*x]*Tan[c + d*x])/(8*d) + (a^2*C*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a 
^2*A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (2*a^2*A*Tan[c + d*x]^3)/(3*d)
 
3.1.16.3 Rubi [A] (verified)

Time = 1.14 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.10, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3523, 3042, 3454, 3042, 3447, 3042, 3500, 3042, 3227, 3042, 4254, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) (a \cos (c+d x)+a)^2 \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^2 (2 a A+a (A+4 C) \cos (c+d x)) \sec ^4(c+d x)dx}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (2 a A+a (A+4 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{3} \int (\cos (c+d x) a+a) \left ((11 A+12 C) a^2+(5 A+12 C) \cos (c+d x) a^2\right ) \sec ^3(c+d x)dx+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((11 A+12 C) a^2+(5 A+12 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{3} \int \left ((5 A+12 C) \cos ^2(c+d x) a^3+(11 A+12 C) a^3+\left ((5 A+12 C) a^3+(11 A+12 C) a^3\right ) \cos (c+d x)\right ) \sec ^3(c+d x)dx+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {(5 A+12 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^3+(11 A+12 C) a^3+\left ((5 A+12 C) a^3+(11 A+12 C) a^3\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int \left (16 (2 A+3 C) a^3+3 (7 A+12 C) \cos (c+d x) a^3\right ) \sec ^2(c+d x)dx+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \int \frac {16 (2 A+3 C) a^3+3 (7 A+12 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (16 a^3 (2 A+3 C) \int \sec ^2(c+d x)dx+3 a^3 (7 A+12 C) \int \sec (c+d x)dx\right )+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 a^3 (7 A+12 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+16 a^3 (2 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx\right )+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 a^3 (7 A+12 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {16 a^3 (2 A+3 C) \int 1d(-\tan (c+d x))}{d}\right )+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (3 a^3 (7 A+12 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {16 a^3 (2 A+3 C) \tan (c+d x)}{d}\right )+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{3} \left (\frac {1}{2} \left (\frac {3 a^3 (7 A+12 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {16 a^3 (2 A+3 C) \tan (c+d x)}{d}\right )+\frac {a^3 (11 A+12 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 A \tan (c+d x) \sec ^2(c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{3 d}}{4 a}+\frac {A \tan (c+d x) \sec ^3(c+d x) (a \cos (c+d x)+a)^2}{4 d}\)

input
Int[(a + a*Cos[c + d*x])^2*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]
 
output
(A*(a + a*Cos[c + d*x])^2*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((2*A*(a^3 
+ a^3*Cos[c + d*x])*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((a^3*(11*A + 12* 
C)*Sec[c + d*x]*Tan[c + d*x])/(2*d) + ((3*a^3*(7*A + 12*C)*ArcTanh[Sin[c + 
 d*x]])/d + (16*a^3*(2*A + 3*C)*Tan[c + d*x])/d)/2)/3)/(4*a)
 

3.1.16.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.1.16.4 Maple [A] (verified)

Time = 7.99 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.12

method result size
parts \(\frac {A \,a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {\left (A \,a^{2}+a^{2} C \right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {a^{2} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}-\frac {2 A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {2 a^{2} C \tan \left (d x +c \right )}{d}\) \(164\)
parallelrisch \(\frac {16 \left (-\frac {21 \left (A +\frac {12 C}{7}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{32}+\frac {21 \left (A +\frac {12 C}{7}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{32}+\left (A +\frac {3 C}{4}\right ) \sin \left (2 d x +2 c \right )+\frac {3 \left (\frac {7 A}{4}+C \right ) \sin \left (3 d x +3 c \right )}{16}+\frac {\left (A +\frac {3 C}{2}\right ) \sin \left (4 d x +4 c \right )}{4}+\frac {45 \left (A +\frac {4 C}{15}\right ) \sin \left (d x +c \right )}{64}\right ) a^{2}}{3 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(176\)
derivativedivides \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-2 A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+2 a^{2} C \tan \left (d x +c \right )+A \,a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(182\)
default \(\frac {A \,a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+a^{2} C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-2 A \,a^{2} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+2 a^{2} C \tan \left (d x +c \right )+A \,a^{2} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+a^{2} C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(182\)
risch \(-\frac {i a^{2} \left (21 A \,{\mathrm e}^{7 i \left (d x +c \right )}+12 C \,{\mathrm e}^{7 i \left (d x +c \right )}-48 C \,{\mathrm e}^{6 i \left (d x +c \right )}+45 A \,{\mathrm e}^{5 i \left (d x +c \right )}+12 C \,{\mathrm e}^{5 i \left (d x +c \right )}-96 A \,{\mathrm e}^{4 i \left (d x +c \right )}-144 C \,{\mathrm e}^{4 i \left (d x +c \right )}-45 A \,{\mathrm e}^{3 i \left (d x +c \right )}-12 C \,{\mathrm e}^{3 i \left (d x +c \right )}-128 A \,{\mathrm e}^{2 i \left (d x +c \right )}-144 C \,{\mathrm e}^{2 i \left (d x +c \right )}-21 A \,{\mathrm e}^{i \left (d x +c \right )}-12 C \,{\mathrm e}^{i \left (d x +c \right )}-32 A -48 C \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {7 A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}-\frac {7 A \,a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {3 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}\) \(275\)
norman \(\frac {\frac {5 a^{2} \left (5 A +4 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}-\frac {a^{2} \left (7 A +12 C \right ) \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}-\frac {a^{2} \left (7 A +12 C \right ) \left (\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {7 a^{2} \left (31 A +12 C \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a^{2} \left (33 A +52 C \right ) \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {a^{2} \left (65 A -44 C \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {a^{2} \left (89 A -204 C \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}+\frac {a^{2} \left (121 A +84 C \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}-\frac {a^{2} \left (7 A +12 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {a^{2} \left (7 A +12 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(294\)

input
int((a+cos(d*x+c)*a)^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,method=_RETURNVER 
BOSE)
 
output
A*a^2/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+ 
tan(d*x+c)))+(A*a^2+C*a^2)/d*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+ 
tan(d*x+c)))+a^2*C/d*ln(sec(d*x+c)+tan(d*x+c))-2*A*a^2/d*(-2/3-1/3*sec(d*x 
+c)^2)*tan(d*x+c)+2*a^2*C/d*tan(d*x+c)
 
3.1.16.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.96 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (7 \, A + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (7 \, A + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (16 \, {\left (2 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (7 \, A + 4 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 16 \, A a^{2} \cos \left (d x + c\right ) + 6 \, A a^{2}\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \]

input
integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm= 
"fricas")
 
output
1/48*(3*(7*A + 12*C)*a^2*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(7*A + 1 
2*C)*a^2*cos(d*x + c)^4*log(-sin(d*x + c) + 1) + 2*(16*(2*A + 3*C)*a^2*cos 
(d*x + c)^3 + 3*(7*A + 4*C)*a^2*cos(d*x + c)^2 + 16*A*a^2*cos(d*x + c) + 6 
*A*a^2)*sin(d*x + c))/(d*cos(d*x + c)^4)
 
3.1.16.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**2*(A+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)
 
output
Timed out
 
3.1.16.7 Maxima [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.59 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {32 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{2} - 3 \, A a^{2} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, A a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 24 \, C a^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 96 \, C a^{2} \tan \left (d x + c\right )}{48 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm= 
"maxima")
 
output
1/48*(32*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^2 - 3*A*a^2*(2*(3*sin(d*x + 
 c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(si 
n(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*A*a^2*(2*sin(d*x + c)/(sin 
(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 12*C*a 
^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin( 
d*x + c) - 1)) + 24*C*a^2*(log(sin(d*x + c) + 1) - log(sin(d*x + c) - 1)) 
+ 96*C*a^2*tan(d*x + c))/d
 
3.1.16.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.44 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (7 \, A a^{2} + 12 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (7 \, A a^{2} + 12 \, C a^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (21 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 36 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 77 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 132 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 83 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 156 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 75 \, A a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 60 \, C a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \]

input
integrate((a+a*cos(d*x+c))^2*(A+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm= 
"giac")
 
output
1/24*(3*(7*A*a^2 + 12*C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(7*A*a 
^2 + 12*C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(21*A*a^2*tan(1/2*d* 
x + 1/2*c)^7 + 36*C*a^2*tan(1/2*d*x + 1/2*c)^7 - 77*A*a^2*tan(1/2*d*x + 1/ 
2*c)^5 - 132*C*a^2*tan(1/2*d*x + 1/2*c)^5 + 83*A*a^2*tan(1/2*d*x + 1/2*c)^ 
3 + 156*C*a^2*tan(1/2*d*x + 1/2*c)^3 - 75*A*a^2*tan(1/2*d*x + 1/2*c) - 60* 
C*a^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d
 
3.1.16.9 Mupad [B] (verification not implemented)

Time = 3.63 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.26 \[ \int (a+a \cos (c+d x))^2 \left (A+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\left (-\frac {7\,A\,a^2}{4}-3\,C\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {77\,A\,a^2}{12}+11\,C\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {83\,A\,a^2}{12}-13\,C\,a^2\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {25\,A\,a^2}{4}+5\,C\,a^2\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a^2\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (7\,A+12\,C\right )}{4\,d} \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^2)/cos(c + d*x)^5,x)
 
output
(tan(c/2 + (d*x)/2)*((25*A*a^2)/4 + 5*C*a^2) - tan(c/2 + (d*x)/2)^7*((7*A* 
a^2)/4 + 3*C*a^2) + tan(c/2 + (d*x)/2)^5*((77*A*a^2)/12 + 11*C*a^2) - tan( 
c/2 + (d*x)/2)^3*((83*A*a^2)/12 + 13*C*a^2))/(d*(6*tan(c/2 + (d*x)/2)^4 - 
4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1 
)) + (a^2*atanh(tan(c/2 + (d*x)/2))*(7*A + 12*C))/(4*d)